UltraSOFAST HMQC NMR and the repetitive acquisition of 2D protein spectra at Hz rates.

نویسندگان

  • Maayan Gal
  • Paul Schanda
  • Bernhard Brutscher
  • Lucio Frydman
چکیده

Following unidirectional biophysical events such as the folding of proteins or the equilibration of binding interactions, requires experimental methods that yield information at both atomic-level resolution and at high repetition rates. Toward this end a number of different approaches enabling the rapid acquisition of 2D NMR spectra have been recently introduced, including spatially encoded "ultrafast" 2D NMR spectroscopy and SOFAST HMQC NMR. Whereas the former accelerates acquisitions by reducing the number of scans that are necessary for completing arbitrary 2D NMR experiments, the latter operates by reducing the delay between consecutive scans while preserving sensitivity. Given the complementarities between these two approaches it seems natural to combine them into a single tool, enabling the acquisition of full 2D protein NMR spectra at high repetition rates. We demonstrate here this capability with the introduction of "ultraSOFAST" HMQC NMR, a spatially encoded and relaxation-optimized approach that can provide 2D protein correlation spectra at approximately 1 s repetition rates for samples in the approximately 2 mM concentration range. The principles, relative advantages, and current limitations of this new approach are discussed, and its application is exemplified with a study of the fast hydrogen-deuterium exchange characterizing amide sites in Ubiquitin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences.

The solid-state NMR spectra of many NMR active elements are often extremely broad due to the presence of chemical shift anisotropy (CSA) and/or the quadrupolar interaction (for nuclei with spin I > 1/2). These NMR interactions often give rise to wideline solid-state NMR spectra which can span hundreds of kHz or several MHz. Here we demonstrate that by using fast MAS, proton detection and dipola...

متن کامل

An improved ultrafast 2D NMR experiment: towards atom-resolved real-time studies of protein kinetics at multi-Hz rates.

Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium ...

متن کامل

Effect of different frequencies of repetitive transcranial magnetic stimulation (rTMS) on acquisition of chemical kindling seizures in rats

IIntroduction: Repetitive transcranial magnetic stimulation (rTMS) modulates the excitability of cortical neural networks. The effect of rTMS on excitability of cortical networks depends on its frequency. According to the previous reports, a distinction is made between low (<1Hz) and high frequencies of rTMS. Low frequencies of rTMS inhibit seizure but high frequencies increase it. In the curre...

متن کامل

Choosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy.

The relative merits of different pairs of two-dimensional NMR pulse sequences (COSY-90 vs COSY-45, NOESY vs T-ROESY, HSQC vs HMQC, HMBC vs CIGAR, etc.) are compared and recommendations are made for the preferred choice of sequences for natural product structure elucidation. Similar comparisons are made between different selective 1D sequences and the corresponding 2D sequences. Many users of 2D...

متن کامل

Three-Dimensional NOESY-HMQC Spectroscopy of a 13C-Labeled Protein

The analysis of NMR spectra of med ium-size ( lo-20 kDa) proteins is often difficult because of severe signal overlap. A number of isotope-edited 2D experiments (I7) and, more recently, 3D NMR experiments have been used to alleviate this problem (8-12). Spreading spectral information in three independent frequency dimensions greatly reduces spectral overlap and thereby simplifies the process of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 129 5  شماره 

صفحات  -

تاریخ انتشار 2007